dech.

DATASHERT

PART NO: GTLCM2X16e

Warning:

THIS SPECIFICATION AND THE DATA DISCLOSED HEREIN OR HEREWITH IS NOT TO BE REPR ODUCED, USED OR DISCLOSED OR IN PART TO ANYONE WITHOUT
THE PERMISSION OF GTech CORPORATION.

dech.

GTLCM2X16e

GTLCM2X16e

Product Overview

The major purpose of this module is to provide an easier man-machine interface
for those computing systems in whose applications friendly operation is a “must.”
In traditional computing system design, proprietary keypad and LCD display
interfaces are implemented and these interfaces are usually different from system
to system. The first design goal of this module is to define a single host interface
for both LCD display and keypad. The second design goal is that this interface
should be available in every computing system. The third design goal requires the
implementation to be OS independent.

Our solution is to use “Serial port” as the interface for both LCD display and
keypad. A simple protocol is further defined so that applications can directly

communicate with this module no matter what the operating system is.

Product Highlights

[] Ideal user interface for network appliance

[] Pre-defined protocol between host and module

[] No driver is required; OS independent

[] Can display alphanumeric characters and eight user defined icons
[] Four operation keys can be customized for different applications

[] Facilitate system installation and operation

Product Specifications
u Display
16x2 characters LCD display
u Function Key
Four keys(up, down, enter and escape)
[] Display Icons
Eight self-defined icons
] Host Interface
Interface with mother-board or SBC
€ Via serial port
¢ Via pre-defined protocol

[] Dimention
68(W)x28(L)x30.3(H)mm

[] Environment

aech.

GTLCM2X16e

& Operating Temperature: 0°C ~50°C (32F ~ 122F)
€ Storage Temperature: -20°C ~60C
€ Relative Humidity: 5% ~ 95%, non-condensing

Benefits To Our Customers

Faster time-to-market

Customer can port/develop their software to/on our ready-to-ship solution to
minimize time-to-market

Better products scalability

Customer can select from our wide range of solutions to scale their products
Leading edge hardware innovation

Customer can always enjoy the most leading edge product from GTech Corporation.
More focus on value-added software development

Independent Software Venders can focus on their value-added software

without worrying the hardware platform development

Reduced inventory and manufacturing costs

Independent Software Venders can team up with GTech Corporation to provide.

solutions to System Integrators or end-users

aech.

GTLCM2X16e Operation Guide

GTLCM2X16e

1. Introduction

The major purpose of this module is to provide an easier man-machine interface
for those computing systems in whose applications friendly operation is a “must.” In
traditional computing system design, proprietary keypad and LCD display interfaces
are implemented and these interfaces are usually different from system to system. The
design goals of this interface are:

A. A single interface for both LCD display and keypad is required.

B. This interface should be available in every computing system.

C. The communication implementation should be OS independent.
Our solution is to use “Serial port” as the interface for both LCD display and keypad.
A simple protocol is further defined so that applications can directly communicate
with this module no matter what the operating system is.

There are only two connectors in this module, as shown in Figure 1: power

connector and Serial Port connector.

Power Serial Port
connector connector
Figure 1.

The power source into this module is 5 volt only. There are only three pins being

used in the Serial port interface:

Pin 2:RxD
Pin 3:TxD

Pin 5 : Ground

In another words, this serial port is defined as DCE, therefore, we can use
straight-through cable to connect it to Serial port of most computers because they are
defined as DTE.

2. Hardware installation

dech.

The installation steps are:

GTLCM2X16e

A. Connect the power connector to the power connector of this module.
B. Connect the straight-through cable between Serial port of this module and

computer.

3. Demo tool

It is a tool for DOS and can be run in Windows environment as well. There are
two areas in this Demo/testing tool. The upper area is for editing/sending
command/data and lower area is for displaying both out-going and in-coming
command/data, as figure 2 shows. The upper area consists of a couple of pages; every
page can store up to ten command/data strings. The first byte of every command / data
string specify the length of this string. The second byte and those after it are the
content to be sent out and are entered in Hexadecimal format. Detailed function of the
tool will be shown after pressing “ALT+F1” keys. To exit the demo tool program,
“ALT+X” can be pressed.

BAZ

2001-02-1%
Comman
[1]1]
/data [1]]
) 00
edit 13
01
Area ng
80
42
18
1C
for help RUH CC232
Display
Area

Figure 2

4. Operation Examples

Three pages of examples are stored as default data of this demo tool. The stored
contents are as following:

The first page (page 0):

F1: ASCII code of string “ABCD”.

F2: Command string to shift the string to right hand side for 3 characters.

dech.

F3: Command string to shift the string to right hand side for 3 characters.

GTLCM2X16e

F4: Command string to shift the string to right hand side for 3 characters.

F5: Command string to request the key-pad status. A response command will be
shown after this request command.

F6: Command string to shift the string to left hand side for 3 characters.

F7: Command to position the cursor to the bottom line, shift the string to right hand
side for 2 characters and ASCII code of string “abcd”.

F8: Command string to shift the string to left hand side for 3 characters.

F9: Command string to request the key-pad status.

F10: Command to clear screen.

The first page (page 1):

F1: ASCII code of character “A”.

F2: ASCII code of character “1”.

F3: ASCII code of character “b”.

F4: Command string to request the key-pad status. A response command will be
shown after this request command.

F5: Clear screen command.

F6: Command to position the cursor at the beginning of the second column.
F7: Command to position the cursor at the beginning of the first column.

F8: ASCII code of string “ABCDEFGHIJ”.

F9: Command to scroll the displayed string to left hand side for one character.

F10: Command to scroll the displayed string to right hand side for one character.

The second page(page 2):

F1: Command to position the cursor to the upper and left hand side Connor.
F2: Command to hide displayed string.

F3: Command to hide cursor and show hidden string.

F4: Command to blink block cursor.

F5: Command to show underline.

F6: Command to move the cursor to left hand side for one character.
F7: Command to move the cursor to right hand side for one character.
F8: ASCII code of character “B”.

F9: ASCII code of character “C”.

F10: ASCII code of character “3”.

5. Operating procedure

There are two parameters to be changed after entering this tool.

aech.

Change the operating mode from “monitor” to “CC232” by pressing “ALT + 0.
2. Change the baud rate from 9600 bps to 2400 bps by pressing “ALT + B” twice.
After these two steps, user is free to select one of the command/data string from the
page “0” and “1.” “Page Up” and “Page Down” keys can be used to switch from one
page to the other. Once one of “F1” to “F10” key being pressed, the corresponding
stored string will be sent immediately which can be verified by checking the
out-going string in displaying area. “Page 0” is a demo page to show:
1. Display the string and move it back/forth and up/down.
2. A loop to interrogate the key pressing status.
User can press “Alt” + “F10” so that it will loop between F1 and F10. “Alt” + “F10”
can be pressed to stop the looping. “Page 17 and “Page 2” are a list of strings to send

out data and major commands.

adech.

GTLCM2X16e COMMAND

GTLCM2X16e

GTLCM2X16e is an intelligent device which will display those data received from RS232
port and reply key pressing status to polling command from RS232 port. There are
command and data from RS232 port. To distinguish between data and commands, the
LCD/key-pad Module recognizes a command prefix, 254 (Hex OFE). The byte
following “254” will be processed as a command. For example, to clear the screen,
send the command prefix (254) followed by the LCD clear-screen code (1). The valid
data range is as following table shows.

Valid data range Displayed characters
0-7 Customized icon 0-7
48-57 (30-39 Hex) 0-9
65-90 (41-5A Hex) A-Z
97-122 (61-7A Hex) a-z

To get the key pressing status, a “read key” command can be issued to this module
which will check the key-pressing status and reply accordingly. The following are the

command and corresponding Decimal/Hex value:

Functions/commands Decimal/Hex |comment

Clear screen 1/01

Home cursor 2/02

Read key 6/06 See note 1

Blank display (retaining data) 8/08

Hide cursor & display blanked characters 12/0C

Turn on (blinking block cursor) 13/0D

Show underline cursor 14/0E

Move cursor 1 character left 16/10

Move cursor 1 character right 20/14

Scroll 1 character left 24/18

Scroll 1 character right 28/1C

Set display address (position the cursor) 128(Hex080)+ |See note 2

location Location

Set character-generator address 64(Hex 040)+ |See note 3
address

Note 1:

Upon receiving the “read key” command from host computer, the LCD/key-pad
module will check the status of every key and reply with status command accordingly.
The replied message from LCD/key-pad module consists of a header and a status byte.
The header byte is 253 (HexOFD). The high nibble (with the most significant bit) of
the status byte is always “4” and the low nibble (with the least significant bit) of the

1

dech.
GTLCM2X16e

status byte is used to indicate key pressing status of the key-pad module. This nibble

will be “F” (of four 1s), if there is no key being pressed while the “read key” being
received. “0” will be used to indicate key pressing status of corresponding key. There
are four keys in this module — upper arrow, down arrow, enter (ENT), and escape
(ESC). The relationship between the function key, corresponding status bit, and status
byte is as following table.

Function key Corresponding status bit status byte

Escape the fourth bit of lower nibble(the least |[4E (H)
significant bit) (1110)

Up arrow the third bit of lower nibble (1101) 4D (H)

Enter the second bit of lower nibble (1011) [4B (H)

Down arrow the first bit of lower nibble (0111) 47 (H)

More than one key can be pressed at the same time so that there may be more than
one “0”s in the low nibble of status byte. For example, if Up and Down arrow keys
are pressed at the same time while “read key” command being received, the replied
status will be “Hex045”.

Note 2:

This command can be used to place the cursor at any location. The corresponding
address for each character on the screen is as following:

For 16x2 Display Address

Character | 1 | 2 |3 |4 |5 |6 | 7|89 10o]11]|12]13|14]15]16
Location | 00 | 01 | 02 | 03|04 | 05|06 |07|08|09|0A|O0B|0C|OD|OE | OF
(Address | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 4A | 4B | 4C | 4D | 4E | 4F

The address of characters at the same row are continuous, so moving cursor
commands can be applied to shift the cursor position back and forth. However, the
address of characters between upper and lower row are discontinuous. To change

cursor position between upper row and lower row, this command will be applied.

Note 3:

This command can be used to create customized icon. The starting address is 64 and
every character will take 8 bytes to create a 5 (width) x 7 (height) resolution picture,
as shown in following:

dech.

CG RAM MAPPING

GTLCM2X16e

Character Patterns
CG RAM Address (CG RAM data)

543210 76 543210
High Low High Low

<—Character
Pattern

<—Cursor

<—Character
Pattern

— = OO = = OO == OO == OO
—_ O —m O, OO~ OO O O
OO O O O OImOo OO ImIo Ol
o»~o‘»—u—u~|o»~ooo»—ao»—ao»~
OO OO OO O OO OO

<—Cursor

1 0
0
L0
L0
1
1
1
1
L0
0
0
L0
1
1
1
1

<—Character
Pattern

e e O O O O e
—_— — O O~ = OO
_o = O = O —= O
o= ,_|,_|_ Y Y Y
OO O OO
[eR e Rl L Renl L Rawll 1)
SO O O O

<—Cursor

To show the customized icon, just send the data between “0” to “7” to this module.
For example, this module will display the customized icon at location 64 to 71 upon
receiving data “0”; it will display the customized icon at location 72 to 79 upon

receiving data “1”.

aech.
GTLCM2X16e

There is a built-in watch dog timer in the module. This module will reset itself and
send out “reset packet” (OFDH, OEH) thereafter.

The input must be a standard RS232 or inverted TTL signal. The RS232 setup is:
Baud rate: 2400 bps

Parity: None

Data bits: 8

Stop bit: 1

The following are default setup after LCD module be initiated:
2-line display mode; every character is 5 x 8 dots.

Display on; cursor off; cursor blink off.

Display will be cleared.

Shift right for entry mode.

Set address counter to “00”(cursor position to 0)

A o e

In entry mode.

26

REV. PCS,

DESCRIPTION

REVISIONS

DATE DRW APP ECN#

_ﬁ 1L 111] ® ® 000000000OOOOO0H &
i | AR [5G, 5o
| 1 — 1 — B = , =g -
o ® @ ©®ooc@oocoo @ @
Qoo &
o — T e o w oF & ® © ©
TOU 0000000000000 - © © 5 ® O0O0o0oeee0 @@
)4 W c4@)
© 0000
Q Q ® ®
319
9.5~ _
] |_O 0000000000000000_ G_ @I
-))
R175
i _ N A _ ; _ _ o _ _ _ \
_ — 22.53 _ _
@ [
| _‘
HO ol “l
515 M\/
8.7 /@
46.4 | o | /M,v
R175
i ﬁ_uma \
o A I o T o N N o o o o O O 1 N 1 N
A T T T m— 349 PART NO DESCRIPTION
Cnnnnnnnnnnnnnn GTLCMZ2X16b-RD | RED PVC PANEL
1 h
_ T T T T T T T _ H GTLCMZ2X16b-BL | BLACK PVC PANEL
I 02 sO117
__ T 17 _ GTLCM2X16b-BU | BLUE PVC PANEL
. “ GTLCM2X16b-SL | SILVER PVC PANEL
102 L UNLESS DHERVISE SPECIFIED, — por NI, GTLCM2X16b serial - DESCRIPTIN - AE{AR K ER 1 B 7REE
G swmwpﬂnm %m >w m__ucwsﬁn SIGNATURCE DATE
2(X< 10 008
G RE mer e aen o apaagy GTECH CORPORATION
0 (X0 £ 0 CHECKED BY LILY 2004/02/01 e wwsz-gtechcn gtechBsz-gtechcn
%____ M % M mw% ”.,wmw ENGR GARY 2004/02/01
ANGLES £ 05° APPROVED BY ~ VIVI 2004/02/01 CAD MODLE: SCALE: 1 REV: A
MATERTAL: ISSUED BY JACK 2004/02/01 CAD DWG SIZE: A3 SHEET: 1 OF 1

_/

T T S LCD A2

W24 (XBES%)

#tinclude <regbl.h>
#include <intrins.h>

sbit de=0xa0; /%P2.0 LCD HJRS 21%/
sbit rw=0xal; /%P2.1 LCD HJ R/W 22%/
sbit cs=0xa4; /%P2.4 LCDHJE 2b%/

sfr 1lcdbus=0x80; /*pOLCD ##5 DO=P0. 0%/
unsigned int syslOmscounter;
unsigned char syslimitcounter;
char pathl1[8]={0x00, 0x1f, 0x00, 0x1f, 0x00, 0x1f, 0x00, Ox1f
char path2[8]={0x1f, 0x00, 0x1f, 000, 0x1f, 0x00, Ox1f, 0x00
char pats1[8]={0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15, 0x15
char pats2[8]={0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a
void soft nop() {}
void soft 10ms () /seksksikskeksiorokk | 2MHZ $2HE 1OMS B ZE Ff siksksteskskstotkokok /
{ register int i;

for (i=0;i<711;i++) ;

/o FLE XA

s /% FE U

}
}
}
b5/ EE SR

}
void soft 20ms () /skskskskeksorokk | 2MHZ $2HE 20MS BAL: ZE Ff skskstotksketokokok /
{ soft 10ms();
soft 10ms () ;
}
void hard 10ms(unsigned int delaytime) /*JET 10MS HOTEA{;ZEI*/
{ syslOmscounter=delaytime;
while (sys1Omscounter) ;
}
unsigned char data lcdcounter;
bit lcdusingl, lcdusing?2;
bit led checkbusy () /&7 LCD 1%/

{ register lcdstate;

dc=0; /#de=1 A HHE, =0 K. *
rw=1; /xrw=1 i, =0 N5, */
cs=1; /*cs=1 LIl */

soft nop();

ledstate=1lcdbus;

cs=0;

return((bit) (lcdstate&0x80)) ;
}
void lcd wremd (unsigned char lcdemd) /%5 LCD iy &%/
{ lcdusingl=1;

while (1cd checkbusy());

lcdbus=lcdemd;

de=0; /*de=1 NEdE, =0 R4
rw=0; /xrw=1 i, =0 5. */
cs=1; /*cs=1 LI */

soft nop();

T
/% FE AT
=
%

: T 1%/

1 2%/

-ty
s X 2%/

TAH/E I FFE LCD A2

cs=0;
lcdbus=0xff;
lcdusing1=0;
}
void lecd moveto(char position) /*8z)ehrBIFEEN . 0-79%/
{ register cmd=0x80;
lcdcounter=position;
if (position > 59)
position += 0x18;
else
{ if (position > 39)position —= 0x14;
else
{ if (position > 19)position += 0x2c;
}
}
cmd=cmd | position;
led wremd (emd) ;
}
void lecd wrdata(char lcddata) /*7E4HT W NS B Efi*/
{ char i;
lcdusing2=1;
while (1cd checkbusy());
if (lcdcounter==20) {
lcd moveto(20) ;
while (lcd checkbusy()):
}
if (1cdcounter==40) {
led moveto (40) ;
while (1cd checkbusy()):
}
if (1cdcounter==60) {
lcd moveto(60) ;
while (1cd checkbusy()):
}
if (1cdcounter==80) {
lcd moveto(0) ;
while (lcd checkbusy()) ;

lcdcounter=0;

} /o Jg B AT AR e/
ledcountert+;
lcdbus=lcddata;
de=1; /*xde=1 AEHE, =0 K. */
=0 frrw=l R, =0 5. %/
cs=1; /*cs=1 %M. */
soft nop();
cs=0;

TAH/E I FFE LCD A2

lcdbus=0xff;
lcdusing2=0;
}
void lcd string(char *strpoint) /+¢E4H7E /N & B/~ LCD 455 Hix/
{ register i=0;
while (strpoint[i]!=0) {
led wrdata(strpoint[i]);

i+
}

}

void led init () /#HIEik*/

{ 1lcd wrcemd(0x38) ; /*UCE 8 N, 2 4T, BxT*/
led wremd (0x0c) ; [HRBEAR LR, TCHR, AN AR/
led_wremd (0x06) ; [HFBGERIANTT 2, WA A/
lcd wremd (0x01) ; /5 R B/

ledcounter=0;
}
void led cls () /*i5kR Won*/
{ lcd wremd(0x01) ;
ledcounter=0;

}

void timer0(void) interrupt 1 /*T0 th s/
{ THO=0xd8: /*12M, 10ms*/
TLO=0xf6;
TRO=1;
if (syslOmscounter!=0) syslOmscounter——; /*ENT 2% 10ms*/

if(syslimitcounter!=0)syslimitcounter—; /*EN 2% 10ms*/
}
main ()
{
unsigned char j;
1E=0;PO=0xff;P1=0x{f ; P2=0xff;P3=0xfT; /*HJ4fifk T/
led init () ;soft 20ms () ;
TMOD=0x51;
THO=0xd8; /%12M, 10ms*/
TLO=0xf6;
TRO=1;ET0=1;EA=1;
while (1)
{
[Rl ML BT, 0 BT UL Q. ABCD..., #/
led_init(); /*4xs/
for (j=0; j<80; j++) {lcd wrdata (0xff) ;}
hard 10ms (50) ;
led initQ; /*fi—, WZH AT 9%/
lcd wremd (0x40) ;
for (j=0; j<8; j++) lcd wrdata(pathl[j]);

TAH/E I FFE LCD A2

for (j=0; j<100; j++) lcd wrdata(0) ;

hard 10ms (50) ;

led init(); /#Hf %/

lcd wremd (0x40) ;

for (j=0; j<8; j++) lcd wrdata(path2[j]) ;

for (j=0; j<100; j++) lcd wrdata(0) ;

hard 10ms (50) ;

led init(); /#BE—/

lcd wremd (0x40) ;

for (j=0; j<8; j++) lcd wrdata(patsl[j]);

for (j=0; j<100; j++) lcd wrdata(0) ;

hard 10ms (50) ;

led_init(); /#% "%/

lcd wremd (0x40) ;

for (j=0; j<8; j++) lcd wrdata(pats2[j]);

for (j=0; j<100; j++) lcd wrdata(0) ;

hard 10ms (50) ;

led init();

led string (“UUUUUUUUUUUULUUUUUULULUUUUUULUUUULULULULLULUUULLULULULLUUUUULUUUUULULUUUULU
uuuu”) ;

hard 10ms (50) ;

led init();

led_string (“QQQQAAQQAAAAAAAAARAAA
QQQQQ”) ;

hard 10ms (50) ;

led init();

lcd string (”ABCDEFGHI JKLMNOPQRSTUVWXYZ0123456789abcdefghi jklmnopgrstuvwxyz0123456789+-!
#$%&?”) ;

hard 10ms (50) ;

}

#BL b C51 RRFHUNIRIER, (U652, W EATIEE . RFINE) CPU RRRIIE S, 2
IR (P R

	GTLCM2X16c_adv.pdf
	GTLCM2X16c_operation guide REV 1.0.pdf
	GTLCM2X16c commands.pdf
	GTLCM2X16c_dimensions.pdf
	字符测试程序.pdf

